Variable properties in a single class of excitatory spinal synapse.

نویسنده

  • David Parker
چکیده

Although synaptic properties are specific to the type of synapse examined, there is evidence to suggest that properties can vary in individual synaptic populations. Here, a large sample of monosynaptic connections made by excitatory interneurons (EINs) onto motor neurons in the lamprey spinal cord locomotor network has been used to examine the properties of a single class of spinal synapse in detail. The properties and activity-dependent plasticity of EIN-evoked EPSPs varied considerably. This variability occurred at convergent inputs made by several EINs onto single motor neurons. This suggests that it was an intrinsic network property and not simply related to differences between animals or experiments. The activity-dependent plasticity of EIN-evoked EPSPs could be negatively or positively related to the initial EPSP amplitude (P1 and P2 connections, respectively). This reflected the development of facilitation and depression from either small or large initial EPSPs. To identify differences in presynaptic properties that could contribute to the synaptic variability, the quantal amplitude, release probability, number of release sites, and size of the available vesicle pool were examined. This analysis suggested that the variable amplitude and plasticity of EPSPs at P1 and P2 connections reflected an interaction between the release probability and the size of the available transmitter store. There is thus significant functional variability in EIN synaptic properties. Synapses ranged from strong (evoked postsynaptic spikes) to weak (small depressing EPSPs). The selection of interneurons with different synaptic properties could provide an intrinsic mechanism for modifying excitatory network interactions and the locomotor network output.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The probabilistic nature of synaptic transmission at a mammalian excitatory central synapse.

The synaptic connection between single group I afferents and dorsal spinocerebellar tract (DSCT) neurons in the cat spinal cord has been studied in an attempt to gain insight into the mechanisms of excitatory synaptic transmission in the mammalian CNS. Fluctuations in the amplitude of single group I fiber EPSPs in DSCT neurons were examined using a numerical deconvolution procedure to reduce th...

متن کامل

Development of spontaneous synaptic transmission in the rat spinal cord.

Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmi...

متن کامل

Neurotransmitters and receptors in the dorsal horn of the spinal cord

Modulation of the sensory input can occur within the dorsal horn of the spinal cord where the primary afferent fibers synapse with neurons that transmit to the higher centers. The transmission of the sensory information begins with activation of the peripheral receptors of primary afferent neurons whose cell bodies lie within the dorsal root ganglia and whose central terminals project to second...

متن کامل

Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC) and SPARC-like 1 (SPARCL1), are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypot...

متن کامل

Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons.

Neuronal activity regulated pentraxin (Narp) has been implicated in the aggregation of AMPA-type glutamate receptors (GluR) at excitatory synapses. In the present paper, we examine the role of endogenous Narp in excitatory synapse formation by using novel, dominant-negative Narp mutants (dnNarp) that selectively bind endogenous Narp and prevent its accumulation at synapses. Axons from neurons t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2003